KINETICS AND THERMODYNAMICS OF THERMAL DEHYDRATION OF MAGNESIUM OXALATE DIHYDRATE

H. Tanaka* and M. Tokumitsu

CHEMISTRY LABORATORY, FACULTY OF SCHOOL EDUCATION, HIROSHIMA UNIVERSITY, SHINONOME, HIROSHIMA, 734, JAPAN

(Received July 12, 1983)

The kinetics and thermodynamics of the thermal dehydration of crystalline powders of $MgC_2O_4 \cdot 2 H_2O$ were studied by means of thermal analyses both at constant temperatures and at linearly increasing temperatures. The dehydration of the dihydrate is regulated by one of the Avrami-Erofeyev laws. The kinetic parameters from TG at constant temperatures are in good agreement with those from TG at the lowest rate of rising temperatures. The dynamic dehydration kinetics was also examined, using DSC recorded simultaneously with TG at linearly increasing temperatures. The validity of the estimated mechanism and kinetic parameters is briefly discussed.

Recently, we have reported kinetic studies on the thermal dehydration of several salt hydrates, using TG both at constant temperatures and at linearly increasing temperatures [1]. The dehydration of ground crystalline powders of these hydrates was found to obey a random nucleation and subsequent growth mechanism.

It seems worthwhile to examine such kinetics along these lines, since the results of different authors are often different. The present paper deals with an investigation of the kinetics and thermodynamics of the thermal dehydration of $MgC_2O_4 \cdot 2 H_2O$ by means of dynamic TG–DSC, recorded simultaneously under various measuring conditions, as well as TG at constant temperatures.

Experimental

Magnesium oxalate dihydrate was prepared by the double decomposition of ammonium oxalate and magnesium chloride in hot aqueous solution. The dihydrate was identified from IR spectra and TG traces. The dihydrate was ground and sieved to four fractions: 100–170, 170–200, 200–280 and 280–350 meshes.

TG-DSC traces were recorded simultaneously at heating rates of 0.58, 1.22 and 2.33 degree min⁻¹ in a flow of nitrogen at a rate of 25 ml min⁻¹ for the fraction 170-200 mesh, using a TG-DSC (8085 E1) apparatus of Rigaku Denki Co. About 15.0 mg of the sample was weighed into a platinum crucible 5 mm in diameter and 2.5 mm in depth, without pressing. TG traces at constant temperatures were also

* Correspondence author

88 TANAKA, TOKUMITSU: DEHYDRATION OF MAGNESIUM OXALATE DIHYDRATE

recorded under the same measuring conditions as in the dynamic run. Other experimental procedures were the same as those described previously [1].

Results and discussion

Isothermal method

We can assume the following relation for the isothermal dehydration of $MgC_2O_4 \cdot 2H_2O_1$:

$$F(\alpha) = kt \tag{1}$$

where $F(\alpha)$ is a function depending on the mechanism of isothermal dehydration, α is the fraction dehydrated at time t, and k is the rate constant. The correct $F(\alpha)$ can be estimated to some extent by plotting it against t. Various $F(\alpha)$ derived on the basis of theoretical models [2] have been examined. Table 1 lists such $F(\alpha)$. Table 2 shows the correlation coefficients r and standard deviations σ in the least square fitting of $F(\alpha)$ vs. t plots. In view of the values of r and σ , both R_n and A_m mechanisms are to be selected as the correct $F(\alpha)$. The mean values of n and m were determined to be 1.56 ± 0.12 and 2.36 ± 0.04 , respectively, over the temperature range $159.8-175.0^{\circ}$ by "scanning" the values with a computer. Typical plots of $F(\alpha)$ vs. t are shown in Fig. 1. Values of k at various temperatures, deduced from the plots using the mean values of n and m, are listed in Table 3. Table 4 shows the activation energy E and frequency factor A, together with the value of r derived from the Arrhenius plot. It is seen that the identical kinetic parameters result from either the A_m or R_n mechanism.

Our result is not compatible with those of other workers [3, 4], which may be use to the different sample and measuring conditions.

$F(\alpha)$	Symbol	Rate-controlling process
α ²	D ₁	One-dimensional diffusion
$\alpha + (1 - \alpha) \ln (1 - \alpha)$	D_2	Two-dimensional diffusion
$[1 - (1 - \alpha)^{1/3}]^2$	D3	Three-dimensional diffusion (Jander function)
$1 - \frac{2}{2}\alpha - (1 - \alpha)^{2/3}$	D4.	Three-dimensional diffusion (Ginstling-Broushtein function)
$\ln \left[\alpha / (1 - \alpha) \right]$	Au	Autocatalytic reaction (Prout-Tompkins function)
$1-(1-\alpha)$ $1/n$	R _n	Phase-boundary reaction; $n = 1, 2$ and 3 (one-, two- and three-dimensional, respectively)
[In (1 - α)] ^{1/m}	A _m	Random nucleation; $m = 1$ Random nucleation and subsequent growth; $m = 2, 3$ and 4 (Avrami–Erofeyev functions)

Table 1 The mechanistic functions $F(\alpha)$ examined for the thermal dehydration of MgC₂O₄ · 2 H₂O

Table 2 The correlation coefficient *r* and standard deviation σ for the least square fitting of $F(\alpha)$ vs. *t* plot for the isothermal dehydration of MgC₂O₄ • 2 H₂O at 159.8° in the α range 0.2-0.9

	D ₁	D ₂	D ₃	D4	
r	0.9961	0.9847	0.9551	0.9764	
$\sigma \times 10^2$	2.205	3.567	2.520	1.205	
	A _u	R ₁	R ₂	R ₃	
r	0.9988	0.9952	0.9994	0.9968	
$\sigma \times 10^2$ 5.102		2.198	0.6219	1.133	
	A ₁	A2	A 3	A 4	
r	0.9845	0.9996	0.9992	0.9978	
$\sigma \times 10^{2}$	10.90	0.9386	0.8762	1.080	

Fig. 1 Typical $F(\alpha)$ vs. t plots for the dehydration of MgC₂O₄ · 2 H₂O at a constant temperature of 159.8° in the α range 0.2–0.9

Non-isothermal method

Typical TG-DSC traces obtained simultaneously for the thermal dehydration of $MgC_2O_4 \cdot 2H_2O$ are shown in Fig. 2. The kinetic parameters can be derived in terms of the equation [5, 6]:

$$\ln \frac{F(\alpha)}{T^2} = \ln \frac{AR}{aE} \left(1 - \frac{2RT}{E}\right) - \frac{E}{R} \frac{1}{T}$$
(2)

where T is the absolute temperature, R is the gas constant, and a is the linear heating rate. If the correct $F(\alpha)$ is used, a plot of $\ln [F(\alpha)/T^2]$ vs. 1/T should give a straight

90 TANAKA, TOKUMITSU: DEHYDRATION OF MAGNESIUM OXALATE DIHYDRATE

	$k \times 10^4$, s ⁻¹				
Temperature, °C	$R_n (n = 1.56)$	$A_m (m = 2.36)$			
159.8	2.7901	3.6105			
161.4	2.8536	3.7212			
162.5	3.5833	4.6168			
165.7	3.9950	5.1473			
166.1	4.1946	5.3842			
170.7	5.8315	7.5647			
170,9	5.7227	7.3466			
175.0	7.1656	9.3802			

Table 3 The rate constants k for the isothermal dehydration of $MgC_2O_4 \cdot 2H_2O$ in terms of R_D and A_m functions

Table 4 The Arrhenius parameters E and A,
and the correlation coefficient r from
the analysis of the isothermal dehydra-
tion of MgC2O4 • 2 H2O

F (α)	E, kJ mol -1	$\log A$, s ⁻¹	- r
R _{1.56}	103.5±1.4	8.93±0.16	0.9915
A _{2.36}	103.9±1.3	9.10±0.15	0.9927

Fig. 2 Typical simultaneous traces of TG (----) and DSC (----) for the dehydration of $MgC_2O_4 \cdot 2 H_2O$ at a heating rate of 1.22 degree min⁻¹

line, from which the values of E and A are derived. Table 5 shows typical values of E and A, together with the value of r, for all $F(\alpha)$ listed in Table 1 except A_u . It seems, in view of the reasonable order of magnitude of E and A, and the reasonable value of r, that an A_m mechanism should regulate the dehydration of MgC₂O₄ • 2 H₂O.

If the isothermally-determined $F(\alpha)$, i.e. $R_{1.56}$ and $A_{2.36}$, are applied to Eq. (2), the values of E and A listed in Table 6 are obtained. It is seen that the parameters decrease with increase in the heating rate. This trend may be explained by a thermal lag between the furnace and the sample [7], as can be seen from the change in dehydration temperature [8]. The dehydration temperatures derived from DSC and TG traces are given in Table 7.

Table 5 The Arrhenius parameters *E* and *A*, and the correlation coefficient *r* for the dehydration of MgC₂O₄ \cdot 2 H₂O from a single TG trace at a heating rate of 1.22 degree min⁻¹ in the α range 0.1–0.9

F (α)	E, kJ mol -1	$\log A$, s ⁻¹	r	
<i>D</i> ₁	347	37.3	0.9730	
D_2	385	41.7	0.9820	
D_3	435	47.0	0.9904	
D_4	402	43.0	0.9853	
R_1	170	16.7	0.9718	
R_2	202	20.3	0.9864	
R_3	214	21.6	0.9901	
A	241	25.3	0.9953	
A_2	117	10.7	0.9949	
A ₃	75.3	5.71	0.9946	
A4	54.4	3.20	0.9942	

Table 6 The Arrhenius parameters *E* and *A* for the dehydration of MgC₂O₄ \cdot 2 H₂O at various heating rates in the α range 0.1–0.9

F (α)		Heating rate (deg/min)						
	Method	0.58		1.3	22	2.33		
		\overline{E} , kJ mol $^{-1}$	$\log A$, s ⁻¹	E, kJ mol -1	$\log A$, s ⁻¹	E, kJ mol-1	$\log A$, s ⁻¹	
R _{1.56}	TG DSC	188 217	19.0 22.5	180 201	17.9 20.3	152 167	14.5 16.3	
A _{2.36}	TG DSC	95.4 108	8.11 9.68	91.3 101	7.67 8.81	76.2 81.2	5 .94 6.53	

92 TANAKA, TOKUMITSU: DEHYDRATION OF MAGNESIUM OXALATE DIHYDRATE

It is noted here that the parameters for $A_{2.36}$ at the lowest heating rate are comparable with those from the isothermal method, whereas those for $R_{1.56}$ are not. We may thus assume that the dehydration of MgC₂O₄ \cdot 2 H₂O is regulated by an A_m mechanism [1]. The A_m mechanism is supported by the fact that the rate constant k is practically unaffected by the particle size. The effect of particle size on the values of E, A and k is shown in Table 8. The A_m mechanism seems to be probable too in that ground crystalline powder samples were used in the present study [9].

It is interesting that the values of E and A from TG are smaller than those from DSC, whereas the values of k are practically equal. The compensation effect also seems to result in this case. The smaller values of E and A for TG may be ascribed to the fact that the volatilization of liberated water is not instantaneous, but a time lag may appear [7]. This may be seen in the effect of the particle size on the difference of E between TG and DSC analyses. Table 8 shows the tendency that the difference of E decreases with decrease in the particle size.

Table 7 The extrapolated onset temperature T_{eo} fromthe DSC trace, the temperature of half-de-hydration $T_{1/2}$ from the TG trace, and thepeak temperature T_p from the DSC trace forthe dehydration of MgC₂O₄ · 2 H₂O

Dehydration	Heating rate (degree/min)				
temp., °C	0.58	1.22	2.33		
Т _{ео}	146.5	154.2	158.2		
$T_{1/2}$	164.4	173.5	181.3		
τ_p^{-1}	168.4	178.0	186.7		

Table 8 The effect of particle size on the kinetic parameters E, A and k for the dehydration of MgC₂O₄ • 2 H₂O at a heating rate of 1.22 degree min⁻¹

	Kinetic parameter	Particle size fraction, mesh							
F(α)		100-170		170-200		200–280		280-350	
		TG	DSC	TG	DSC	TG	DSC	TG	DSC
	E, kJ mol -1	198	222	180	201	203	233	173	175
R1 56	$\log A$, s $^{-1}$	19.8	22.6	17.9	20.3	20.6	24.1	17.1	17.4
1.50	$k \times 10^4$, s ⁻¹	5.12	4.50	7.02	6.42	5.94	5.45	7.36	6.31
	E, kJ mol -1	100	111	91.3	101	104	113	87.1	90.4
A _{2.36}	$\log A$, s ⁻¹	8.65	9.95	7.67	8.81	9.09	10.2	7.17	7.57
	$k \times 10^4$, s ⁻¹	8.64	8.60	9.91	10.0	9.53	9.50	9.88	9.53

It seems worthwhile to compare the value of E for the dehydration of MgC₂O₄ · 2 H₂O with the corresponding enthalpy change ΔH . The ΔH value per mole of water evolved was determined to be 61.20±0.21 kJ mol⁻¹. The isothermally-determined value of E (ca. 104 kJ mol⁻¹) is considerably larger than the ΔH value. This difference is explained by a possible contribution of nucleation of the solid product to the activation energy [10]. This can be regarded as another argument for the proposed dehydration mechanism: the random nucleation and its subsequent growth mechanism.

References

- 1 For example; H. Tanaka, S. Ohshima, S. Ichiba and H. Negita, Thermochim. Acta, 48 (1981) 137.
- 2 J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.
- 3 D. Dollimore, G. R. Heal and J. Mason, Thermochim. Acta, 24 (1978) 307.
- 4 W. E. Mourad and S. Nashed, Thermochim. Acta, 41 (1980) 117.
- 5 A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.
- 6 J. Zsakó, J. Thermal Anal., 5 (1973) 239.

- 7 J. Zsakó, E. Kékedy and Cs. Várhelyi, J. Thermal Anal., 1 (1969) 339.
- 8 S. R. Dharwadker and M. D. Karkhanavala, in R. F. Schwenker, Jr. and P. D. Garn (Eds.), Thermal Analysis, Vol. 2, Academic Press, New York, 1969, p. 1049.
- 9 H. R. Beer and H. R. Oswald, in H. G. Wiedemann and W. Hemminger (Eds.), Thermal Analysis, Vol. 2, Birkhäuser Verlag, Basel, 1980, p. 121.
- 10 H. Tanaka and K. Maeda, Thermochim. Acta, 51 (1981) 97.

Zusammenfassung — Kinetik und Thermodynamik der thermischen Dehydratisierung von kristallinen Pulvern von $MgC_2O_4 \cdot 2H_2O$ wurde thermoanalytisch bei konstanter und linear ansteigender Temperatur untersucht. Die Dehydratisierung des Dihydrats folgt einem der Avrami-Erofeyev-Gesetzen. Die aus TG-Messungen bei konstanter und bei mit der geringsten Geschwindigkeit linear ansteigender Temperatur erhaltenen kinetischen Parameter stimmen gut überein. Die Kinetik der dynamischen Dehydratisierung wurde ebenfalls durch DSC und gleichzeitiger Registrierung der TG-Kurven untersucht. Die Zuverlässigkeit des ermittelten Mechanismus und der bestimmten kinetischen Parameter wird kurz diskutiert.

Резюме — Методом термического анализа при постоянных и линейно-возростающих температурах изучена кинетика и термодинамика термической дегидратации кристаллических порошков MgC₂O₄ · 2 H₂O. Реакция дегидратации подчиняется одному из уравнений Аврами—Ерофеева. Кинетические параметри, установленные на основе TГ при постоянном нагреве, хорошо согласуются с теми, которые были выведены из данных TГ при самой низкой скорости подъема температур. Динамика кинетики дегидратации была исследована совмещенным методом ДСК-ТГ при линейном нагреве. Кратко обсужден механизм и параметры кинетики реакции дегидратации.